(1,0)
Um estudo considerou um modelo de regressão linear simples na forma y = 0,8x + b + ε, em que y é a variável dependente, x representa a variável explicativa do modelo, o coeficiente b denomina-se intercepto e ε é um erro aleatório que possui média nula e desvio padrão σ. Sabe-se que a variável y segue a distribuição normal padrão e que o modelo apresenta coeficiente de determinação R2 igual a 85%. Com base nessas informações, julgue o item que se segue.
A média da variável regressora x é superior a 1
A correlação linear entre as variáveis x e y é superior a 0,9.
Um estudo considerou um modelo de regressão linear simples na forma y = 0,8x + b + ε, em que y é a variável dependente, x representa a variável explicativa do modelo, o coeficiente b denomina-se intercepto e ε é um erro aleatório que possui média nula e desvio padrão σ. Sabe-se que a variável y segue a distribuição normal padrão e que o modelo apresenta coeficiente de determinação R2 igual a 85%. Com base nessas informações, julgue o item que se segue
O desvio padrão de x é superior a 1.
Um modelo de regressão linear múltipla tem a forma y = β0 + β1X1 + β2X2 + ε, em que β0, β1 e β2 são os coeficientes do modelo e ε denota o erro aleatório normal com média nula e desvio padrão σ. As variáveis regressoras X1 e X2 são ortogonais. O quadro a seguir mostra as estimativas dos coeficientes do modelo obtidas pelo método da máxima verossimilhança a partir de uma amostra de tamanho n = 20. Nesse quadro, para cada coeficiente βk, k = 0, 1, 2, a razão t refere-se ao seu teste de significância H0 : βk = 0 versus H1 : βk … 0.
Com base nessas informações e no quadro apresentado, julgue o próximo item.
O erro padrão da estimativa do coeficiente β1 foi superior a 0,3
A estimativa do coeficiente β0, com base no método de mínimos quadrados ordinários, foi igual a 15.
A correlação linear entre X1 e X2 é positiva.
A razão t referente à estimativa do coeficiente β2 possui 20 graus de liberdade.
Retirando-se a variável X2, o modelo ajustado é uma reta de regressão na forma
Um modelo de regressão linear múltipla tem a forma y = β0 + β1X1 + β2X2 + ε, em que β0, β1 e β2 são os coeficientes do modelo e ε denota o erro aleatório normal com média nula e desvio padrão σ. As variáveis regressoras X1 e X2 são ortogonais. O quadro a seguir mostra as estimativas dos coeficientes do modelo obtidas pelo método da máxima verossimilhança a partir de uma amostra de tamanho n = 20. Nesse quadro, para cada coeficiente βk, k = 0, 1, 2, a razão t refere-se ao seu teste de significância H0 : βk = 0 versus H1 : βk ≠ 0.
A hipótese nula H0 : β2 = 0 é rejeitada para o nível de significância do teste α = 5%.
Em uma fila para atendimento, encontram-se 1.000 pessoas. Em ordem cronológica, cada pessoa recebe uma senha para atendimento numerada de 1 a 1.000. Para a estimação do tempo médio de espera na fila, registram-se os tempos de espera das pessoas cujas senhas são números múltiplos de 10, ou seja, 10, 20, 30, 40, ..., 1.000.
Considerando que o coeficiente de correlação dos tempos de espera entre uma pessoa e outra nessa fila seja igual a 0,1, e que o desvio padrão populacional dos tempos de espera seja igual a 10 minutos, julgue o item que se segue.
A situação em tela descreve uma amostragem sistemática.
Para a estimação do tempo médio de espera, a fração amostral adotada na referida situação será superior a 0,12.
Para avaliar a satisfação dos servidores públicos de certo tribunal no ambiente de trabalho, realizou-se uma pesquisa. Os servidores foram classificados em três grupos, de acordo com o nível do cargo ocupado. Na tabela seguinte, k é um índice que se refere ao grupo de servidores, e Nk denota o tamanho populacional de servidores pertencentes ao grupo k.
De cada grupo k foi retirada uma amostra aleatória simples sem reposição de tamanho nk; pk representa a proporção de servidores amostrados do grupo k que se mostraram satisfeitos no ambiente de trabalho.
A partir das informações e da tabela apresentadas, julgue o próximo item.
Com relação ao grupo k = 2, o erro padrão da estimativa da proporção dos servidores satisfeitos no ambiente de trabalho foi inferior a 0,1.
No que tange às noções de estatística, julgue o item a seguir.
Em um determinado conjunto de valores, é correto afirmar que a média harmônica é sempre maior que a média aritmética ou igual à média aritmética.
Considere que, em um ambiente de trabalho industrial, as seguintes medições acerca da poluição do ar tenham sido observadas: 1, 6, 4, 3, 2, 3, 1, 5, 1, 4. Nessa situação, julgue o item que se segue.A variância amostral é superior a 2,8.
Um levantamento amostral proporcionou as estatísticas precedentes, referentes a determinada variável quantitativa X. Considerando essas informações e que a variável X é composta por 1240 observações, julgue o item subsequente.O desvio padrão de X foi inferior a 6.
Recuperar senha