(1,0)
Na anestesia peridural, como a usada nos partos, o médico anestesista precisa introduzir uma agulha nas costas do paciente, que atravessará várias camadas de tecido até chegar a uma região estreita, chamada espaço epidural, que envolve a medula espinhal. A agulha é usada para injetar um líquido anestésico, e a força que deve ser aplicada à agulha para fazê-la avançar através dos tecidos é variável.A figura é um gráfico do módulo F da força (em newton) em função do deslocamento x da ponta da agulha (em milímetro) durante uma anestesia peridural típica.Considere que a velocidade de penetração da agulha deva ser a mesma durante a aplicação da anestesia e que a força aplicada à agulha pelo médico anestesista em cada ponto deve ser proporcional à resistência naquele ponto.
HALLIDAY, D.; RESNICK, R. Fundamentos de física. Rio de Janeiro: lTC, 2008.Com base nas informações apresentadas, a maior resistência à força aplicada observa-se ao longo do segmento
No desenvolvimento de um novo remédio, pesquisadores monitoram a quantidade Q de uma substância circulando na corrente sanguínea de um paciente, ao longo do tempo t. Esses pesquisadores controlam o processo, observando que Q é uma função quadrática de t. Os dados coletados nas duas primeiras horas foram:t (hora) 0 1 2 Q (miligrama) 1 4 6Para decidir se devem interromper o processo, evitando riscos ao paciente, os pesquisadores querem saber, antecipadamente, a quantidade da substância que estará circulando na corrente sanguínea desse paciente após uma hora do último dado coletadoNas condições expostas, essa quantidade (em miligrama) será igual a
Um jardineiro cultiva plantas ornamentais e as coloca à venda quando estas atingem 30 centímetros de altura. Esse jardineiro estudou o crescimento de suas plantas, em função do tempo, e deduziu uma fórmula que calcula a altura em função do tempo, a partir do momento em que a planta brota do solo até o momento em que ela atinge sua altura máxima de 40 centímetros. A fórmula é h = 5·log2 (t + 1), em que t é o tempo contado em dia e h, a altura da planta em centímetro.A partir do momento em que uma dessas plantas é colocada à venda, em quanto tempo, em dia, ela alcançará sua altura máxima?
Uma formiga encontra-se no ponto X, no lado externo de um copo que tem a forma de um cilindro reto. No lado interno, no ponto V, existe um grão de açúcar preso na parede do copo. A formiga segue o caminho XYZWV (sempre sobre a superfície lateral do copo), de tal forma que os trechos ZW e WV são realizados na superfície interna do copo. O caminho XYZWV é mostrado na figura.
Sabe-se que: os pontos X, V, W se encontram à mesma distância da borda; o trajeto WV é o mais curto possível; os trajetos XY e ZW são perpendiculares à borda do copo; e os pontos X e V se encontram diametralmente opostos.Supondo que o copo é de material recortável, realiza-se um corte pelo segmento unindo P a Q, perpendicular à borda do copo, e recorta-se também sua base, obtendo então uma figura plana. Desconsidere a espessura do copo.Considerando apenas a planificação da superfície lateral do copo, a trajetória da formiga é
Em um laboratório, cientistas observaram o crescimento de uma população de bactérias submetida a uma dieta magra em fósforo, com generosas porções de arsênico. Descobriu-se que o número de bactérias dessa população, após t horas de observação, poderia ser modelado pela função exponencial N(t) = N0ekt, em que N0 é o número de bactérias no instante do início da observação (t = 0) e representa uma constante real maior que 1, e k é uma constante real positiva.Sabe-se que, após uma hora de observação, o número de bactérias foi triplicado. Cinco horas após o início da observação, o número de bactérias, em relação ao número inicial dessa cultura, foi
No ano de 1751, o matemático Euler conseguiu demonstrar a famosa relação para poliedros convexos que relaciona o número de suas faces (F), arestas (A) e vértices (V): V + F = A + 2. No entanto, na busca dessa demonstração, essa relação foi sendo testada em poliedros convexos e não convexos. Observou-se que alguns poliedros não convexos satisfaziam a relação e outros não. Um exemplo de poliedro não convexo é dado na figura. Todas as faces que não podem ser vistas diretamente são retangulares.
Qual a relação entre os vértices, as faces e as arestas do poliedro apresentado na figura?
Uma pessoa fez um depósito inicial de R$ 200,00 em um fundo de Investimentos que possui rendimento constante sob juros compostos de 5% ao mês. Esse Fundo possui cinco planos de carência (tempo mínimo necessário de rendimento do Fundo sem movimentação do cliente). Os planos são: Plano A: carência de 10 meses; Plano B: carência de 15 meses; Plano C: carência de 20 meses; Plano D: carência de 28 meses; Plano E: carência de 40 meses.O objetivo dessa pessoa é deixar essa aplicação rendendo até que o valor inicialmente aplicado duplique, quando somado aos juros do fundo. Considere as aproximações: log 2 = 0,30 e log 1,05 = 0,02.Para que essa pessoa atinja seu objetivo apenas no período de carência, mas com a menor carência possível, deverá optar pelo plano
Muitos restaurantes servem refrigerantes em copos contendo limão e gelo. Suponha um copo de formato cilíndrico, com as seguintes medidas: diâmetro = 6 cm e altura = 15 cm. Nesse copo, há três cubos de gelo, cujas arestas medem 2 cm cada, e duas rodelas cilíndricas de limão, com 4 cm de diâmetro e 0,5 cm de espessura cada. Considere que, ao colocar o refrigerante no copo, os cubos de gelo e os limões ficarão totalmente imersos. (Use 3 como aproximação para π).O volume máximo de refrigerante, em centímetro cúbico, que cabe nesse copo contendo as rodelas de limão e os cubos de gelo com suas dimensões inalteradas, é igual a
Uma empresa, investindo na segurança, contrata uma firma para instalar mais uma câmera de segurança no teto de uma sala. Para iniciar o serviço, o representante da empresa informa ao instalador que nessa sala já estão instaladas duas câmeras e, a terceira, deverá ser colocada de maneira a ficar equidistante destas. Além disso, ele apresenta outras duas informações:(i) um esboço em um sistema de coordenadas cartesianas, do teto da sala, onde estão inseridas as posições das câmeras 1 e 2, conforme a figura.
(ii) cinco relações entre as coordenadas (x ; y) da posição onde a câmera 3 deverá ser instalada.R1: y = x R2: y = -3x + 5 R3: y = -3x + 10 R4: y = 1/3 x + 5/3 R5: y = 1/3 x + 1/10O instalador, após analisar as informações e as cinco relações, faz a opção correta dentre as relações apresentadas para instalar a terceira câmera.A relação escolhida pelo instalador foi a
No trapézio isósceles mostrado na figura a seguir, M é o ponto médio do segmento BC, e os pontos P e Q são obtidos dividindo o segmento AD em três partes iguais.
Pelos pontos B, M, C, P e Q são traçados segmentos de reta, determinando cinco triângulos internos ao trapézio, conforme a figura. A razão entre BC e AD que determina áreas iguais para os cinco triângulos mostrados na figura é
Em um município foi realizado um levantamento relativo ao número de médicos, obtendo-se os dados:
Tendo em vista a crescente demanda por atendimento médico na rede de saúde pública, pretende-se promover a expansão, a longo prazo, do número de médicos desse município, seguindo o comportamento de crescimento linear no período observado no quadro.
Qual a previsão do número de médicos nesse município para o ano 2040?
O dono de um salão de festas precisa decorar cinco pilastras verticais cilíndricas idênticas, cujo raio da base mede 10 cm. O objetivo é revestir integralmente essas pilastras com faixas de menor comprimento possível, de modo que cada uma tenha seis faixas de cor preta e cinco faixas de cor branca, conforme ilustrado na figura.
Ele orçou as faixas em cinco lojas que as comercializam na largura e nas cores desejadas, porém, em todas elas, só são vendidas peças inteiras. Os comprimentos e os respectivos preços das peças comercializadas por loja estão apresentados no quadro.
O dono do salão de festas decidiu efetuar a compra em uma única loja, optando por aquela em que a compra ficaria mais barata.Utilize 3 como valor aproximado para π.A loja na qual o dono do salão de festas deve comprar as peças necessárias para confeccionar as faixas é
Considere que a safra nacional de cereais, leguminosas e oleaginosas, em 2012, aponte uma participação por região conforme indicado no gráfico. Em valores absolutos, essas estimativas indicam que as duas regiões maiores produtoras deveriam produzir juntas um total de 119,8 milhões de toneladas em 2012.
De acordo com esses dados, a produção estimada, em milhão de tonelada, de cereais, leguminosas e oleaginosas, em 2012, na Região Sudeste do país, foi um valor mais aproximado de
O projeto de transposição do Rio São Francisco consiste na tentativa de solucionar um problema que há muito afeta as populações do semiárido brasileiro, a seca. O projeto prevê a retirada de 26,4 m³/s de água desse rio. Para tornar mais compreensível a informação do volume de água a ser retirado, deseja-se expressar essa quantidade em litro por minuto.Disponível em: www.infoescola.com. Acesso em: 28 out. 2015.Com base nas informações, qual expressão representa a quantidade de água retirada, em litro por minuto?
O esquema apresenta a concentração de álcool presente em cada 200 mL de diferentes tipos de bebidas.
Disponível em: http://g1.globo.com. Acesso em: 30 jul. 2012 (adaptado).De acordo com as informações, indique qual o número máximo de taças de vinho, de 300 mL, que podem ser consumidas, semanalmente, por uma mulher que se enquadre no grupo de médio risco.
Recuperar senha